
Enhancing Decision-Making by Leveraging Human
Intervention in Large-Scale Sensor Networks

Enrico Casini1, Jessica Depree2, Niranjan Suri1,3, Jeffrey M. Bradshaw1, Teresa Nieten2

1Florida Institute for Human and Machine Cognition (IHMC), Pensacola, FL USA

2Modus Operandi, Melbourne, FL USA
3U.S. Army Research Laboratory, Adelphi, MD USA

Abstract—Extensive deployment of sensor networks in recent
years has led to the generation of large volumes of data. One
approach to processing such large volumes of data is to rely on
parallelized approaches based on architectures such as
MapReduce. However, fully-automated processing without
human intervention is error prone. Supporting human
involvement in processing pipelines of data in a variety of
contexts such as warfare, cyber security, threat monitoring, and
malware analysis leads to improved decision-making. Although
this kind of human-machine collaboration seems
straightforward, involving a human operator into an automated
processing pipeline presents some challenges. For example, due
to the asynchronous nature of the human intervention, care must
be taken to ensure that once a user-made correction or assertion
is introduced, all necessary adjustment and reprocessing is
performed. In addition, to make the best use of limited resources
and processing capabilities, reprocessing of data in light of such
corrections must be minimized. This paper introduces an
innovative approach for human-machine integration in decision-
making for large-scale sensor networks that rely on the popular
Hadoop MapReduce framework.

Keywords: sensor data processing; sensor networks; human-
machine teamwork; human-in-the-loop architectures; human-
assisted architectures; data pipelines; decision-making;
MapReduce; Hadoop

I. INTRODUCTION
The ability to make decisions based on the best available

information at the tactical edge is critical to successful mission
accomplishment. Navy and Marine Corps units at the lowest
tactical levels often operate in disconnected or disadvantaged
network environments with spotty connectivity. This requires
that nearly all of their decision-making be based on local data
that is immediately available to them.

To provide customized data for decision-making in support
of tactical operations, we propose a pipeline-inspired
architecture that combines machine data processing with
human assistance. This architecture allows for much of the
sorting, analysis, and predictions to be done in the cloud. Such
an approach will significantly enhance field decision-making
by empowering commanders with locally adapted,
semantically processed data while retains human involvement
in selecting among options.

In order to achieve this level of fidelity with current
technology, disconnected and disadvantaged users must rely on

briefs and products from higher echelons or direct sensor feeds
and reports which, while containing much of the information
they need, also inevitably includes potentially large volumes of
irrelevant results. By storing and processing this information in
the cloud and delivering results to tactical units on an on-
demand basis, commanders can quickly obtain access to data
that normally would not be available until later, when a link-up
with higher echelons becomes possible. Of course, in order to
validate this approach, architectures like the one proposed
would need to be employed in multiple tactical scenarios in
Field User Evaluations (FUEs) in order to both prove the
concept as well as to determine where and when tactical units
gain the greatest advantage for the delivery of this information.

Other markets of interest, outside the DoD, include the
Department of Homeland Security and state-level emergency
management organizations. Allowing individual first
responders to tailor the data they receive while executing time
critical operations enhances their ability to make decisions
using the most relevant information available without requiring
them to sort through mounds of immaterial data.

A relevant tactical scenario for the evaluation of this
architectural approach is that of named-entity recognition, with
the ultimate goal of tracking a specific high-value individual
(HVI). Sightings of HVI’s are reported in intelligence reports
derived multiple sources of potentially conflicting information.
It is here that people can make a substantial difference by
weighing the conflicting reports, relying on additional sources
of personal expertise as well as strengths in inductive reasoning
and the exercise of context-sensitive judgment.. The ultimate
goal is to predict the HVI’s next move with human-vetted
results. A reasonable dataset for this evaluation can be a corpus
of HVI-centric unclassified data, mixed with publicly available
news reports. Further demand for research in this area is
experiencing a strong momentum, especially at the tactical
edge where interests in big data analysis and the leveraging of
rich, real-time information are of prime importance.

Researchers in this field specify that the standard design
process for developing human-machine approaches either starts
with a human approach and enhances it with decision-support
or starts with an automated approach and enhances it with
operator input. We are introducing a mixed-initiative, pipeline-
based approach that incorporates the best of both worlds. The
aim of our approach is increase performance and throughput in
the automated processing and delivery of the data throughout

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

978-1-4799-8015-4/15/$31.00 ©2015 IEEE 200

the pipeline while also providing the advantages of human
participation at key intervention points along the pipeline
through intuitive user interfaces.

II. RELATED WORK
The concept of automation—which began with the

straightforward objective of replacing whenever feasible any
task currently performed by a human with a machine that could
do the same task better, faster, or cheaper—became one of the
first issues to attract the notice of early human factors
researchers. Pioneering researchers such as Paul Fitts
attempted to systematically characterize the general strengths
and weaknesses of humans and machines [1]. The resulting
discipline of function allocation aimed to provide a rational
means of determining which system-level functions should be
carried out by humans and which by machines.

Obviously, however, the suitability of a particular human or
machine to take on a particular task may vary over time and in
different situations. Hence, early research in adaptive function
allocation and adjustable autonomy was undertaken with the
hope that shifting of responsibilities between humans and
machines could be made dynamic, in those situations where
human and machine capabilities for a given task overlap [2] [3]
[4].

Eventually, however, it became plain to researchers that
things were not as simple as they first appeared. For example,
many functions in complex systems are shared by humans and
machines; hence the need to consider synergies and conflicts
among the various performers of joint actions. Moreover, it has
become clear that function allocation is not a simple process of
transferring responsibilities from one component to another.
Automated assistance of whatever kind does not simply
enhance our ability to perform the task: it changes the nature of
the task itself [5].

As automation becomes more sophisticated, the nature of
its interaction with people will need to change in profound
ways. In non-trivial interaction of this sort, the point is not to
think so much about which tasks are best performed by humans
and which by automation but rather how tasks can best be
shared by both humans and automation working in concert. In
1960, Licklider called this concept man-computer symbiosis
[6]. To counter the limitations of the Fitts’ list, which is clearly
intended to summarize what humans and machines each do
well on their own, Robert Hoffman has summarized the
findings of David Woods in an “un-Fitts list” [7], which
emphasizes how the competencies of humans and machines
can be enhanced through appropriate forms of mutual
interaction. Of course, certain tasks, such as those requiring
sophisticated judgment and nuanced assessment of situations
and contexts, cannot be shifted to machines, and other tasks,
such as those requiring ultra-precise calculations and high-
tempo operations on large volumes of data, cannot be
performed by humans. But we believe that there are significant
limitations to the current “automation only” approaches that
can be addressed only by human-machine teamwork.

Over a number of years, we have identified several cross-
cutting requirements for successful, resilient human-machine
teamwork [5]. The first two requirements are observability and

directability. Lack of observability affects our ability to
understand and evaluate what is currently happening in the
world, while lack of directability limits our ability to
implement our goals for what we want to happen in the future.
Additional cross-cutting requirements, predictability and
learning, are closely related to each other. All these
requirements provide valuable design guidance as different
options for implementation are considered.

In addition to these cross-cutting requirements, the specific
requirements of the tasks must be addressed. These are
addressed through a process we call “coactive design” [8].
Coactive design recognizes that the underlying
interdependence of participants in joint activity is a critical
factor in the design of human-machine systems. The term
“coactive” highlights the fact that both humans and machines
mutually provide active assistance to improve system
performance, often in close and continuous interaction.

In order to “design for interdependence,” we have sought to
analyze specific ways in which we can exploit all human
capabilities — sensing, decision-making, acting — to assist
machines, and vice versa. These constitute the opportunities for
human intervention that are discussed above. Having identified
opportunities for human intervention, the next step in the
design process is to modify algorithms and design user
interfaces from the ground up to make partial results
observable, predictable, and adaptive for each of these cases of
human intervention.

III. HUMAN INTERVENTION MODALITIES
In our design, we developed three specific forms or modes of
human intervention:

a) System asks the Human Operator for Clarification:
This intervention mode captures the situation described
earlier, where the system identifies documents and
intermediate results with confidence values that fall below a
configured threshold. These documents are queued up in an
asynchronous “inbox” for introspection by the operator. The
operator may examine these documents and provide the
necessary feedback and oversight that would improve the
accuracy of the processing outcome for the documents
analyzed. An important aspect of this architectural approach is
asynchronous processing of human and machine contributions
to decision-making. The system does not demand that a
human operator immediately respond to any specific request
and the human operator does not hold up the processing of the
system by taking time to examine and determine the outcome
of specific assumptions.

b) Random Inspection by Human Operator: The second
intervention mode involves random inspection by human
operators into any of the intermediate results of document
analysis or on the conclusions/assertions generated by the
Hadoop algorithms. This mode of interaction is analogous to
statistical sampling in a production-line, where the operator
randomly selects and examines documents and generated
output to evaluate the accuracy of the automated algorithms.
At any point in this process, the operator may correct the

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

201

system’s assumptions and conclusions and insert them back
into the system. These corrections may result in the system re-
evaluating other documents that have been processed that are
affected by the changes. Once again, an important aspect of
this interaction mode is the asynchrony – the system does not
have to wait for the operator and the operator does not have to
be continuously monitoring the system.

c) Human Operator Drill-down: The third intervention
mode involves an operator choosing to inspect the processing
chain that led to specific assertions and conclusions. While
performing a query or other analysis operation, the operator
may question an assertion or conclusion in the system and
examine the evidence chain that leads back to the original
documents that were ingested by the system. Upon examining
this chain, the operator may either accept these conclusions
(which is fed back into the system in order to increase its
confidence values) or correct the intermediate results or final
assertions. Once these corrections are entered into the system,
the system will re-evaluate any other documents that might be
affected by the changes.

The architecture and implementation details described in the
following sections summarize the system that we have
designed to cover all the human intervention scenarios
explained above.

IV. ARCHITECTURE

A. Hadoop
Apache™ Hadoop® [9] is a software framework that

enables the developer to analyze and transform very large data
sets using the MapReduce programming model [10]. What
makes Hadoop’s architecture and paradigm relevant in big data
analysis and decision-making is the partitioning and
computation of the data itself across many (potentially
thousands) of hosts, while executing application computations
in parallel close to their data. Because of this fundamental
characteristic, a Hadoop cluster is easily able to scale its
computation capacity, storage capacity, and IO bandwidth by
simply adding commodity servers. Within the proposed
pipeline-inspired architecture, Hadoop MapReduce is being fed
with data consisting of unstructured or semi-structured text
documents, sensors or other formatted data, and human
operator entry. The architecture provides for the data to be
streamed into the Hadoop cloud and partitioned to the
applicable processing resource(s) in batch mode. Operators
have the opportunity to interrogate individual data points
during this processing in an interactive way. We will provide
more details about the individual tasks of this modality in the
implementation section.

B. HDFS

 HDFS [11] is the distributed file system component of
Hadoop. HDFS is part of the family of other popular
distributed file systems (PVFS, Lustre and GFS) [12],
specifically designed to store metadata and application data
separately. Each node in a Hadoop instance typically has a
single node called “name node”. Name nodes are responsible

for handling the metadata that describes the data; all the other
nodes of the cluster are responsible for the actual data to be
processed and are generally referred to as “data nodes”; a
cluster of data nodes form the HDFS cluster. The architecture
of an HDFS cluster provides for these data nodes to serve up
blocks of data over the network using HDFS’s block protocol.
This is done taking advantage of the TCP/IP network layer as a
transport for communication between the nodes.

 HDFS was specifically designed to be able to store very
large files (typically in the range of gigabytes to terabytes of
data) across multiple machines. This fits the requirement of
highly modular architecture that keeps the dataset as consistent
as possible (for a distributed file system) within a given unit of
time. One of the other main requirements of our architectural
approach is for the human to be able to intervene on the
assertions while the algorithm of the MapReduce job is still
processing the remaining documents of the dataset. The batch
mode of HDFS and Hadoop MapReduce allows for live scans
of the data, giving the human operator the opportunity to look
across the data in the HDFS prior to committing it to a
consolidated data store.

Fig. 1. Global view of the system’s architecture

C. Accumulo
Apache™ Accumulo [13] is a data storage and retrieval

system that provides a sorted, distributed key/value store based
on the BigTable technology from Google [6]. BigTable is a
distributed storage system that is designed to scale up to
petabytes of data across thousands of commodity servers. Its
architecture makes use of a tabular key–value store, in which
each key is a pair of strings corresponding to a row and column
identifier. These records are lexicographically sorted by row
key, and rows are distributed across multiple database servers.
Efficient record ingestion and read are ensured through this
mechanism of sorted records, even for a small range of rows,
independently of the quantity of data stored.

Accumulo and the others BigTable-like distributed
databases provide a storage solution for data-intensive
applications, making trade-offs between performance,
scalability, and data consistency. It is known that traditional
Relational Database Management System (RDBMS) based on

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

202

Structured Query Language (SQL) aim to provide atomic
transactions and data consistency, a fundamental requirement
for many applications. On the other hand, BigTable uses a
relatively new “NoSQL” [14] approach that relaxes these
transaction requirements, guaranteeing only eventual
consistency while tolerating old or approximate data within the
update process. It is worth mentioning though, that since new
NoSQL databases lack the mature code base and rich
availability of features of established RDBMS solutions, the
process of designing and optimizing performance-sensitive
queries must be taken care of by the application developer.

D. Node.js
Node.js™ [15] is a software platform designed to develop

fast and scalable networking and server-side applications. The
Node.js runtime executes JavaScript code inside a particularly
efficient VM, the Google V8 JavaScript engine [16]. A large
percentage of its basic modules are written in JavaScript. For
these reasons and the easy portability of the runtime (Node.js
applications can run on Windows, Mac OS X and Linux with
no changes), its popularity in industry and research has been
increasing steadily.

Furthermore, Node.js proposes an event-driven API that
suits the development of network applications designed to
maximize throughput and efficiency. The latter is achieved by
design, using a non-blocking I/O model and asynchronous
events. In fact, even though the underlying core uses multiple
threads for file and network events, Node.js applications run
single-threaded, hiding the complexity of multithreaded code
and lock management from the network programmer. Due to
these design choices and its asynchronous nature, Node.js is
best suited for I/O bound and real-time applications, being able
to scale up to millions of concurrent requests. Given its built-in
support for asynchronous I/O, sockets, and HTTP
communication, Node.js can also act as a traditional web server
without the need of any additional modules. For all of these
reasons, Node.js fits our needs perfectly to realize a web
application that enhances document evaluation and decision-
making by allowing human intervention. A brief analysis of the
requirements shows that the web application needs to scale up
to potentially thousands of injected documents per second,
while the server-side application requires the handling of
multiple concurrent requests by different operators.

E. RabbitMQ
RabbitMQ™ [17] is an open source message-oriented

middleware (or message broker) implementing the Advanced
Message Queuing Protocol (AMQP) [18] and providing a
reliable, guaranteed and in-order message delivery. AMQP is
an open standard application layer protocol for message-
oriented middleware that supports message orientation,
queuing and routing (including point-to-point and publish-and-
subscribe). The architecture of any AMQP-compliant
middleware like RabbitMQ consists of three main components:
Publisher(s), Consumer(s) and Broker/Server(s) [19]. Each
component can be replicated in number and situated on
independent nodes. Publishers and Consumers communicate
with each other through message queues bound to exchanges
within the Brokers.

For the purpose of this paper, RabbitMQ was essential to
guarantee a transparent delivery of data messages between the
Accumulo data store and Node.js due to the heterogeneity of
the two platforms in terms of programming languages (Java
and JavaScript respectively).

V. IMPLEMENTATION DETAILS
The task of developing the architecture involves

determining the data flow through the system, the components
involved, and where the human intervention opportunities will
be. As stated in the previous sections, data enters the system
through unstructured or semi-structured text documents,
sensors or other formatted data, and human operator entry. The
development of this highly interconnected system involved all
the components described in the architectural view sections,
adapting the input/output of each component to fit this complex
pipeline. On one extreme end, also identifiable as the source of
the pipeline, the Hadoop MapReduce framework has being
leveraged for the phase of document processing. The first part
of the processing pipeline has been created wherein document
sorting and information extraction - tokenizing, part-of-speech
tagging, named entity recognition and disambiguation, etc. -
are all performed in a highly modular and distributed format,
through which the entire pipeline is scalable to large volumes
of information. The developed architectures provides for all of
the listed tasks to be performed across a large body of
unprocessed text and entirely in parallel.

This high modularity requirement is achieved through a
separation of the processing phases, in which each listed step is
being performed by a different MapReduce job. This modular
subdivision of the information extraction process allows for
fine control; at each step in the MapReduce pipeline, the
intermediate data are stored on the Hadoop Distributed File
System (HDFS) and therefore present opportunities for human
intervention. Through this continuous evaluation and
integration process that involves the human, we aimed to
improve the global accuracy while reducing the time necessary
for the entity recognition task when processing huge amounts
of data.

All assertions made about the documents within the
processing pipeline are assigned confidence values at the time
of extraction; every assertion below a defined certainty
threshold gets ranked according to uncertainty and successively
sent out to the following component of the pipeline. This is
accomplished by adding an additional output to several of the
MapReduce jobs, containing the machine-performed assertions
ranked by confidence. The ranked assertions are periodically
scanned and read from the Accumulo database through a Java
connector implemented using the available public API. Thanks
to this component, the assertions are then pushed to RabbitMQ
that stores them in the appropriate queue.

Once the data is in the queue, the RabbitMQ process is
triggered and its service (running in background all the time)
takes care of pushing them to the instance of Node.js
subscribed to the queue. This is done by taking advantage of
the simple and performant publish/subscribe mechanism
provided by RabbitMQ. The Node.js module is, by design,
optimized to maximize throughput with its non-blocking I/O
model. Data is received asynchronously from one pipe and sent

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

203

to another. The Node.js module implements an HTTP server
that is responsible for serving this live data to a web client,
through WebSockets via Socket.IO [20]. This end of the
pipeline ultimately allows the human operator to examine their
veracity and provide corrections, if necessary. The web
interface for the human operates is itself built with HTML5,
JavaScript and jQuery [21].

Assertions are presented to the user by an interface in order
of reverse confidence; that is, the user is presented with low-
certainty assertions first as more of the user’s time is likely to
be spent on those. When a change on one or more assertions is
made, the human operator can decide to send the changes back
to Accumulo in a one by one fashion or all at once. The format
chosen for the data-interchange is JSON (JavaScript Object
Notation) [22], allowing the exchange of data between the
Node.js module and the Accumulo API. After a JSON data
transformation, the Node.js module pushes the restricted set of
assertions that the human operator modified back to Accumulo
through the Java API connector.

All the changes made by the human operator are executed
in parallel while the MapReduce pipeline is still operational on
other documents and entities. At each human intervention
opportunity, the data is not required to be examined; if a user
never offers any sort of input, the processing of both the
unexamined document and subsequent information will
continue. If corrections are provided, they will be persisted
both to the HDFS (where the document’s representation will be
updated and any necessary reprocessing will be performed),
and Accumulo, the datastore where all salient assertions are
ultimately persisted. Accumulo takes care of updating the
dataset on which the MapReduce jobs are operating in an
asynchronous and consistent way. Possible interventions made
by the human operator will also influence the capacity of the
MapReduce entity recognition task, increasing its precision and
confidence during the disambiguation phase.

VI. EXPERIMENTAL RESULTS

A. Experimental Design
A testing corpus of 60 documents was selected from news

sites. The gold data set was constructed by randomly sampling
20% of the corpus at the sentence level. This body of text was
manually annotated with named entity tags for person entities.
The corpus consisted of articles from online news sources,
specifically Al Jazeera. Testing was performed on a single-
node Hadoop Cluster running on a CentOS 6.3 virtual
machine.

A series of experiments was then conducted using the gold
data set. The following phrases are used to describe stages that
occurred in each experiment.

Statistical Entity Extraction: Named entity extraction was
performed by the statistical OpenNLP name finder, which
uses a maximum entropy model.

Dictionary Tagging: Extracted entities are added to a
dictionary, which is then used with the OpenNLP dictionary
name finder to locate and tag missed names. This allowed
some degree of name recognition to step in when entities
appeared in less obvious contexts and statistical recognition
failed. For instance, if the name “Bashar al-Assad” were found

in the statistical step, all instances of the sequence “Bashar al-
Assad” would be tagged as an entity in the dictionary step.
The type of the dictionary-recognized entity was assigned to
match the original dictionary entry.

Name Expansion: Extracted character sequences
were divided into substrings so that the individual components
of the name (i.e. first, middle, and last names) could be
extracted. For instance, a person entity named “John Kerry”
found in the first pass would result in the tagging of non-
consecutive instances of both “John” and “Kerry” as person
entities in the second pass.

Human Intervention: Prior to the dictionary tagging
stage, a user was allowed to vet entities for accuracy. In this
experiment, 199 person entities were reviewed and, if
appropriate, corrected.

Experiment	 1	 (Baseline)	 :	
+	 Statistical	 Entity	 Extraction	
Experiment	 2:	 	
+	 Statistical	 Entity	 Extraction	
+	 Dictionary	 Tagging	
-‐	 Name	 expansion	
-‐	 Human	 Intervention	
Experiment	 3:	 	
+	 Statistical	 Entity	 Extraction	
+	 Dictionary	 Tagging	
+	 Name	 expansion	
-‐	 Human	 Intervention	
Experiment	 4:	 	
+	 Statistical	 Entity	 Extraction	
+	 Dictionary	 Tagging	
-‐	 Name	 expansion	
+	 Human	 Intervention	
Experiment	 5:	 	
+	 Statistical	 Entity	 Extraction	
+	 Dictionary	 Tagging	
+	 Name	 expansion	
+	 Human	 Intervention	

B. Experimental Results
The results of the experiments are shown in Table 1.

Experiment Results
.

Table 1. Experiment Results

Experiment	 Precision	 %	 Recall	 %	 F-‐Measure	 %	
Experiment	 1	 	 79.79	 40.11	 53.39	
Experiment	 2	 50.64	 42.24	 46.06	
Experiment	 3	 50.31	 43.85	 46.86	
Experiment	 4	 80.61	 42.24	 55.39	
Experiment	 5	 80.39	 43.85	 56.75	

C. Discussion
The baseline, using the default OpenNLP named entity

extraction models, showed reasonable precision and low
recall. No research or effort went toward improving the
baseline accuracy, as our goal is merely to show the effect our
distributed pipeline and human vetting had on the results.

When found entities were tagged elsewhere in the corpus,
as in Experiments 1-4, the recall increased as missed entities

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

204

(of the same name) were found. However, the precision
dropped significantly. Random inspection of the results
indicate that some common words had been tagged in the
statistical extraction stage as entities, and these wrongfully
tagged entities were subsequently perpetuated throughout the
corpus by the dictionary tagging stage. When we added in the
name expansion, allowing multi-word names to be annotated
as parts, the recall improved yet again, but the precision went
down slightly; this can be accounted for in the same way as
the initial precision drop.

The human vetted results improved over the baseline.
They yielded similar or greater increases to recall without the
loss of precision. This is because the user removed the entities
that had been wrongly tagged in the statistical extraction stage,
preventing them from being wrongfully tagged throughout the
remainder of the corpus. The gains to precision will be small,
because there are few wrongfully tagged entities; these results
show a system that is targeted at improving recall. At this
stage, the user is merely certifying whether or not something
is an entity, which allows the boost in recall without the hit to
precision that would result in non-entities being tagged
throughout the corpus. Further, there is an upper bound to
recall gains, as our user interface does provide away to
suggest or tag entities which were missed entirely.

The overall testing showed a measurable improvement in
F-measure and recall with human vetting over non-vetting
with a single intervention point currently implemented. It
allows for the recall gain of the automatic extraction system
without lowering precision. The measured accuracy of our
methods was highly dependent on corpus size. Large amounts
of data are paramount to any statistical extraction system, and
the small corpus made some of our measures unstable.
Further, the efficacy of our system is directly proportional to
the interrelatedness of the reports; our design relies on our
entity reoccurrence throughout a corpus.

VII. CONCLUSIONS AND FUTURE WORK
The architecture proved to be effective in several of its design
goals. It allowed for the effective insertion of a human
operator into a massively distributed, high-volume data
environment; the human’s contributions had a noticeable
effect on the overall accuracy of the system. The system made
efficient use of the operator’s input without being wholly
dependent on human intervention – the system never waits.
Finally, the architecture valued the human-in-the-loop over
computational resources, but still limited the amount of time
spent on redundant and unnecessary reprocessing.
Moreover, the results demonstrated a concept fundamental to
the design of any multistage decision system: error
propagation. Each assertion made automatically by the
computer will be propagated by the system, creating a
snowball effect of incorrect information. The experiments in
which entity name expansion occurred without human vetting
showed just how detrimental to a system’s accuracy this can
be. The minimal interaction of a human with the pipeline at

each stage of processing can dramatically increase a system’s
accuracy by preventing error propagation.

ACKNOWLEDGMENT
This	 material	 is	 based	 upon	 work	 performed	 under	 Office	
of	 Naval	 Research	 SBIR	 Contract	 No.	 N00014-‐13-‐O-‐1178.	
Any	 opinions,	 findings	 and	 conclusions	 or	
recommendations	 expressed	 in	 this	 material	 are	 those	 of	
the	 author(s)	 and	 do	 not	 reflect	 the	 views	 of	 the	 Office	 of	
Naval	 Research.	 	

REFERENCES
[1] P. M. Fitts, “Human Engineering for an Effective Air Navigation and

Traffic Control System,” W Washington, DC: National Research
Council, 1951.

[2] J. M. Bradshaw, M. Sierhuis, A. Acquisti, P. Feltovich, R. Hoffman, R.
Jeffers, D. Prescott, N. Suri, A. Uszok, and R. Van Hoof, "Adjustable
autonomy and human-agent teamwork in practice: An interim report on
space applications," in Agent Autonomy, edited by Henry Hexmoor,
Rino Falcone and Cristiano Castelfranchi, 243-80. Kluwer, 2003.

[3] J. M. Bradshaw, P. J. Feltovich, H. Jung, S. Kulkarni, W. Taysom, and
A. Uszok, “Dimensions of adjustable autonomy and mixed-initiative
interaction,” in Agents and Computational Autonomy: Potential, Risks,
and Solutions, (M. Nickles, M. Rovatos, and G. Weiss, eds.), pp. 17–39,
Berlin/Heidelberg: Springer, 2004.

[4] G. A. Dorais, R. P. Bonasso, D. Kortencamp, B. Pell, and D.
Schreckenghost, “Adjustable autonomy for human-centered autonomous
systems on Mars,” in First International Conference of the Mars Society,
1998.

[5] J. M. Bradshaw, P. Feltovich, and M. Johnson, “Human-Agent
Interaction,” in Handbook of Human-Machine Interaction, edited by
Guy Boy, in press. Ashgate, 2011, pp. 283–302.

[6] J. C. R. Licklider, "Man-computer symbiosis," IRE Transactions in
Electronics. New York: Institute of Radio Engineers. (1960): 4-11.

[7] R. Hoffman, P. Feltovich, K. M. Ford, D. D. Woods, G. Klein, and A.
Feltovich, "A rose by any other name… would probably be given an
acronym," IEEE Intelligent Systems, July-August 2002, 72-80.

[8] M. Johnson, J. M. Bradshaw, P. J. Feltovich, C. M. Jonker, M. B. van
Riemsdijk, and M. Sierhuis, “Coactive design: Designing support for
interdependence in joint activity”. Journal of Human-Robot Interaction,
Vol. 3, No. 1, 2014, pp. 43-69.

[9] Apache Hadoop, URL hadoop.apache.org
[10] MapReduce, Wikipedia URL en.wikipedia.org/wiki/MapReduce
[11] HDFS, URL hadoop.apache.org/docs/r1.2.1/hdfs_design.html
[12] M. Varade, V. Jethani, “Distributed Metadata Management Scheme in

HDFS,” in International Journal of Scientific and Research Publications,
Vol. 3, Issue 5, 2013.

[13] Apache Accumulo, URL accumulo.apache.org
[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[15] NoSQL, Wikipedia URL en.wikipedia.org/wiki/NoSQL
[16] Node.js, URL nodejs.org
[17] The V8 JavaScript engine, code.google.com/p/v8.
[18] RabbitMQ, URL rabbitmq.com
[19] AMQP, URL amqp.org
[20] SocketIO, URL socket.io
[21] jQuery, URL jquery.com
[22] JavaScript Object Notation, JSON, URL json.org

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

205

