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Abstract—Extensive deployment of sensor networks in recent 
years has led to the generation of large volumes of data. One 
approach to processing such large volumes of data is to rely on 
parallelized approaches based on architectures such as 
MapReduce. However, fully-automated processing without 
human intervention is error prone. Supporting human 
involvement in processing pipelines of data in a variety of 
contexts such as warfare, cyber security, threat monitoring, and 
malware analysis leads to improved decision-making. Although 
this kind of human-machine collaboration seems 
straightforward, involving a human operator into an automated 
processing pipeline presents some challenges. For example, due 
to the asynchronous nature of the human intervention, care must 
be taken to ensure that once a user-made correction or assertion 
is introduced, all necessary adjustment and reprocessing is 
performed. In addition, to make the best use of limited resources 
and processing capabilities, reprocessing of data in light of such 
corrections must be minimized. This paper introduces an 
innovative approach for human-machine integration in decision-
making for large-scale sensor networks that rely on the popular 
Hadoop MapReduce framework. 

Keywords: sensor data processing; sensor networks; human-
machine teamwork; human-in-the-loop architectures; human-
assisted architectures; data pipelines; decision-making; 
MapReduce; Hadoop 

I. INTRODUCTION 
The ability to make decisions based on the best available 

information at the tactical edge is critical to successful mission 
accomplishment. Navy and Marine Corps units at the lowest 
tactical levels often operate in disconnected or disadvantaged 
network environments with spotty connectivity. This requires 
that nearly all of their decision-making be based on local data 
that is immediately available to them. 

To provide customized data for decision-making in support 
of tactical operations, we propose a pipeline-inspired 
architecture that combines machine data processing with 
human assistance. This architecture allows for much of the 
sorting, analysis, and predictions to be done in the cloud. Such 
an approach will significantly enhance field decision-making 
by empowering commanders with locally adapted, 
semantically processed data while retains human involvement 
in selecting among options. 

In order to achieve this level of fidelity with current 
technology, disconnected and disadvantaged users must rely on 

briefs and products from higher echelons or direct sensor feeds 
and reports which, while containing much of the information 
they need, also inevitably includes potentially large volumes of 
irrelevant results. By storing and processing this information in 
the cloud and delivering results to tactical units on an on-
demand basis, commanders can quickly obtain access to data 
that normally would not be available until later, when a link-up 
with higher echelons becomes possible. Of course, in order to 
validate this approach, architectures like the one proposed 
would need to be employed in multiple tactical scenarios in 
Field User Evaluations (FUEs) in order to both prove the 
concept as well as to determine where and when tactical units 
gain the greatest advantage for the delivery of this information.  

Other markets of interest, outside the DoD, include the 
Department of Homeland Security and state-level emergency 
management organizations. Allowing individual first 
responders to tailor the data they receive while executing time 
critical operations enhances their ability to make decisions 
using the most relevant information available without requiring 
them to sort through mounds of immaterial data. 

A relevant tactical scenario for the evaluation of this 
architectural approach is that of named-entity recognition, with 
the ultimate goal of tracking a specific high-value individual 
(HVI). Sightings of HVI’s are reported in intelligence reports 
derived multiple sources of potentially conflicting information. 
It is here that people can make a substantial difference by 
weighing the conflicting reports, relying on additional sources 
of personal expertise as well as strengths in inductive reasoning 
and the exercise of context-sensitive judgment.. The ultimate 
goal is to predict the HVI’s next move with human-vetted 
results. A reasonable dataset for this evaluation can be a corpus 
of HVI-centric unclassified data, mixed with publicly available 
news reports. Further demand for research in this area is 
experiencing a strong momentum, especially at the tactical 
edge where interests in big data analysis and the leveraging of 
rich, real-time information are of prime importance. 

Researchers in this field specify that the standard design 
process for developing human-machine approaches either starts 
with a human approach and enhances it with decision-support 
or starts with an automated approach and enhances it with 
operator input. We are introducing a mixed-initiative, pipeline-
based approach that incorporates the best of both worlds. The 
aim of our approach is increase performance and throughput in 
the automated processing and delivery of the data throughout 
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the pipeline while also providing the advantages of human 
participation at key intervention points along the pipeline 
through intuitive user interfaces. 

II. RELATED WORK 
The concept of automation—which began with the 

straightforward objective of replacing whenever feasible any 
task currently performed by a human with a machine that could 
do the same task better, faster, or cheaper—became one of the 
first issues to attract the notice of early human factors 
researchers. Pioneering researchers such as Paul Fitts 
attempted to systematically characterize the general strengths 
and weaknesses of humans and machines [1]. The resulting 
discipline of function allocation aimed to provide a rational 
means of determining which system-level functions should be 
carried out by humans and which by machines. 

Obviously, however, the suitability of a particular human or 
machine to take on a particular task may vary over time and in 
different situations. Hence, early research in adaptive function 
allocation and adjustable autonomy was undertaken with the 
hope that shifting of responsibilities between humans and 
machines could be made dynamic, in those situations where 
human and machine capabilities for a given task overlap [2] [3] 
[4]. 

Eventually, however, it became plain to researchers that 
things were not as simple as they first appeared. For example, 
many functions in complex systems are shared by humans and 
machines; hence the need to consider synergies and conflicts 
among the various performers of joint actions. Moreover, it has 
become clear that function allocation is not a simple process of 
transferring responsibilities from one component to another. 
Automated assistance of whatever kind does not simply 
enhance our ability to perform the task: it changes the nature of 
the task itself [5]. 

As automation becomes more sophisticated, the nature of 
its interaction with people will need to change in profound 
ways. In non-trivial interaction of this sort, the point is not to 
think so much about which tasks are best performed by humans 
and which by automation but rather how tasks can best be 
shared by both humans and automation working in concert. In 
1960, Licklider called this concept man-computer symbiosis 
[6]. To counter the limitations of the Fitts’ list, which is clearly 
intended to summarize what humans and machines each do 
well on their own, Robert Hoffman has summarized the 
findings of David Woods in an “un-Fitts list” [7], which 
emphasizes how the competencies of humans and machines 
can be enhanced through appropriate forms of mutual 
interaction. Of course, certain tasks, such as those requiring 
sophisticated judgment and nuanced assessment of situations 
and contexts, cannot be shifted to machines, and other tasks, 
such as those requiring ultra-precise calculations and high-
tempo operations on large volumes of data, cannot be 
performed by humans. But we believe that there are significant 
limitations to the current “automation only” approaches that 
can be addressed only by human-machine teamwork. 

Over a number of years, we have identified several cross-
cutting requirements for successful, resilient human-machine 
teamwork [5]. The first two requirements are observability and 

directability. Lack of observability affects our ability to 
understand and evaluate what is currently happening in the 
world, while lack of directability limits our ability to 
implement our goals for what we want to happen in the future. 
Additional cross-cutting requirements, predictability and 
learning, are closely related to each other. All these 
requirements provide valuable design guidance as different 
options for implementation are considered. 

In addition to these cross-cutting requirements, the specific 
requirements of the tasks must be addressed. These are 
addressed through a process we call “coactive design” [8]. 
Coactive design recognizes that the underlying 
interdependence of participants in joint activity is a critical 
factor in the design of human-machine systems. The term 
“coactive” highlights the fact that both humans and machines 
mutually provide active assistance to improve system 
performance, often in close and continuous interaction. 

In order to “design for interdependence,” we have sought to 
analyze specific ways in which we can exploit all human 
capabilities — sensing, decision-making, acting — to assist 
machines, and vice versa. These constitute the opportunities for 
human intervention that are discussed above. Having identified 
opportunities for human intervention, the next step in the 
design process is to modify algorithms and design user 
interfaces from the ground up to make partial results 
observable, predictable, and adaptive for each of these cases of 
human intervention.  

III. HUMAN INTERVENTION MODALITIES 
In our design, we developed three specific forms or modes of 
human intervention: 
 

a) System asks the Human Operator for Clarification: 
This intervention mode captures the situation described 
earlier, where the system identifies documents and 
intermediate results with confidence values that fall below a 
configured threshold. These documents are queued up in an 
asynchronous “inbox” for introspection by the operator. The 
operator may examine these documents and provide the 
necessary feedback and oversight that would improve the 
accuracy of the processing outcome for the documents 
analyzed. An important aspect of this architectural approach is 
asynchronous processing of human and machine contributions 
to decision-making. The system does not demand that a 
human operator immediately respond to any specific request 
and the human operator does not hold up the processing of the 
system by taking time to examine and determine the outcome 
of specific assumptions. 
 

b) Random Inspection by Human Operator: The second 
intervention mode involves random inspection by human 
operators into any of the intermediate results of document 
analysis or on the conclusions/assertions generated by the 
Hadoop algorithms. This mode of interaction is analogous to 
statistical sampling in a production-line, where the operator 
randomly selects and examines documents and generated 
output to evaluate the accuracy of the automated algorithms. 
At any point in this process, the operator may correct the 
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system’s assumptions and conclusions and insert them back 
into the system. These corrections may result in the system re-
evaluating other documents that have been processed that are 
affected by the changes. Once again, an important aspect of 
this interaction mode is the asynchrony – the system does not 
have to wait for the operator and the operator does not have to 
be continuously monitoring the system. 
 

c) Human Operator Drill-down: The third intervention 
mode involves an operator choosing to inspect the processing 
chain that led to specific assertions and conclusions. While 
performing a query or other analysis operation, the operator 
may question an assertion or conclusion in the system and 
examine the evidence chain that leads back to the original 
documents that were ingested by the system. Upon examining 
this chain, the operator may either accept these conclusions 
(which is fed back into the system in order to increase its 
confidence values) or correct the intermediate results or final 
assertions. Once these corrections are entered into the system, 
the system will re-evaluate any other documents that might be 
affected by the changes. 

 
The architecture and implementation details described in the 
following sections summarize the system that we have 
designed to cover all the human intervention scenarios 
explained above. 

IV. ARCHITECTURE 

A. Hadoop 
Apache™ Hadoop® [9] is a software framework that 

enables the developer to analyze and transform very large data 
sets using the MapReduce programming model [10]. What 
makes Hadoop’s architecture and paradigm relevant in big data 
analysis and decision-making is the partitioning and 
computation of the data itself across many (potentially 
thousands) of hosts, while executing application computations 
in parallel close to their data. Because of this fundamental 
characteristic, a Hadoop cluster is easily able to scale its 
computation capacity, storage capacity, and IO bandwidth by 
simply adding commodity servers. Within the proposed 
pipeline-inspired architecture, Hadoop MapReduce is being fed 
with data consisting of unstructured or semi-structured text 
documents, sensors or other formatted data, and human 
operator entry. The architecture provides for the data to be 
streamed into the Hadoop cloud and partitioned to the 
applicable processing resource(s) in batch mode. Operators 
have the opportunity to interrogate individual data points 
during this processing in an interactive way. We will provide 
more details about the individual tasks of this modality in the 
implementation section. 

B. HDFS 

 HDFS [11] is the distributed file system component of 
Hadoop. HDFS is part of the family of other popular 
distributed file systems (PVFS, Lustre and GFS) [12], 
specifically designed to store metadata and application data 
separately. Each node in a Hadoop instance typically has a 
single node called “name node”. Name nodes are responsible 

for handling the metadata that describes the data; all the other 
nodes of the cluster are responsible for the actual data to be 
processed and are generally referred to as “data nodes”; a 
cluster of data nodes form the HDFS cluster. The architecture 
of an HDFS cluster provides for these data nodes to serve up 
blocks of data over the network using HDFS’s block protocol. 
This is done taking advantage of the TCP/IP network layer as a 
transport for communication between the nodes. 

 HDFS was specifically designed to be able to store very 
large files (typically in the range of gigabytes to terabytes of 
data) across multiple machines. This fits the requirement of 
highly modular architecture that keeps the dataset as consistent 
as possible (for a distributed file system) within a given unit of 
time. One of the other main requirements of our architectural 
approach is for the human to be able to intervene on the 
assertions while the algorithm of the MapReduce job is still 
processing the remaining documents of the dataset. The batch 
mode of HDFS and Hadoop MapReduce allows for live scans 
of the data, giving the human operator the opportunity to look 
across the data in the HDFS prior to committing it to a 
consolidated data store. 

 
Fig. 1. Global view of the system’s architecture 

C. Accumulo 
Apache™ Accumulo [13] is a data storage and retrieval 

system that provides a sorted, distributed key/value store based 
on the BigTable technology from Google [6]. BigTable is a 
distributed storage system that is designed to scale up to 
petabytes of data across thousands of commodity servers. Its 
architecture makes use of a tabular key–value store, in which 
each key is a pair of strings corresponding to a row and column 
identifier. These records are lexicographically sorted by row 
key, and rows are distributed across multiple database servers. 
Efficient record ingestion and read are ensured through this 
mechanism of sorted records, even for a small range of rows, 
independently of the quantity of data stored. 

Accumulo and the others BigTable-like distributed 
databases provide a storage solution for data-intensive 
applications, making trade-offs between performance, 
scalability, and data consistency. It is known that traditional 
Relational Database Management System (RDBMS) based on 
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Structured Query Language (SQL) aim to provide atomic 
transactions and data consistency, a fundamental requirement 
for many applications. On the other hand, BigTable uses a 
relatively new “NoSQL” [14] approach that relaxes these 
transaction requirements, guaranteeing only eventual 
consistency while tolerating old or approximate data within the 
update process. It is worth mentioning though, that since new 
NoSQL databases lack the mature code base and rich 
availability of features of established RDBMS solutions, the 
process of designing and optimizing performance-sensitive 
queries must be taken care of by the application developer. 

D. Node.js 
Node.js™ [15] is a software platform designed to develop 

fast and scalable networking and server-side applications. The 
Node.js runtime executes JavaScript code inside a particularly 
efficient VM, the Google V8 JavaScript engine [16]. A large 
percentage of its basic modules are written in JavaScript. For 
these reasons and the easy portability of the runtime (Node.js 
applications can run on Windows, Mac OS X and Linux with 
no changes), its popularity in industry and research has been 
increasing steadily. 

Furthermore, Node.js proposes an event-driven API that 
suits the development of network applications designed to 
maximize throughput and efficiency. The latter is achieved by 
design, using a non-blocking I/O model and asynchronous 
events. In fact, even though the underlying core uses multiple 
threads for file and network events, Node.js applications run 
single-threaded, hiding the complexity of multithreaded code 
and lock management from the network programmer. Due to 
these design choices and its asynchronous nature, Node.js is 
best suited for I/O bound and real-time applications, being able 
to scale up to millions of concurrent requests. Given its built-in 
support for asynchronous I/O, sockets, and HTTP 
communication, Node.js can also act as a traditional web server 
without the need of any additional modules. For all of these 
reasons, Node.js fits our needs perfectly to realize a web 
application that enhances document evaluation and decision-
making by allowing human intervention. A brief analysis of the 
requirements shows that the web application needs to scale up 
to potentially thousands of injected documents per second, 
while the server-side application requires the handling of 
multiple concurrent requests by different operators. 

E. RabbitMQ 
RabbitMQ™ [17] is an open source message-oriented 

middleware (or message broker) implementing the Advanced 
Message Queuing Protocol (AMQP) [18] and providing a 
reliable, guaranteed and in-order message delivery. AMQP is 
an open standard application layer protocol for message-
oriented middleware that supports message orientation, 
queuing and routing (including point-to-point and publish-and-
subscribe). The architecture of any AMQP-compliant 
middleware like RabbitMQ consists of three main components: 
Publisher(s), Consumer(s) and Broker/Server(s) [19]. Each 
component can be replicated in number and situated on 
independent nodes. Publishers and Consumers communicate 
with each other through message queues bound to exchanges 
within the Brokers. 

For the purpose of this paper, RabbitMQ was essential to 
guarantee a transparent delivery of data messages between the 
Accumulo data store and Node.js due to the heterogeneity of 
the two platforms in terms of programming languages (Java 
and JavaScript respectively). 

V. IMPLEMENTATION DETAILS 
The task of developing the architecture involves 

determining the data flow through the system, the components 
involved, and where the human intervention opportunities will 
be. As stated in the previous sections, data enters the system 
through unstructured or semi-structured text documents, 
sensors or other formatted data, and human operator entry. The 
development of this highly interconnected system involved all 
the components described in the architectural view sections, 
adapting the input/output of each component to fit this complex 
pipeline. On one extreme end, also identifiable as the source of 
the pipeline, the Hadoop MapReduce framework has being 
leveraged for the phase of document processing. The first part 
of the processing pipeline has been created wherein document 
sorting and information extraction - tokenizing, part-of-speech 
tagging, named entity recognition and disambiguation, etc. - 
are all performed in a highly modular and distributed format, 
through which the entire pipeline is scalable to large volumes 
of information. The developed architectures provides for all of 
the listed tasks to be performed across a large body of 
unprocessed text and entirely in parallel. 

This high modularity requirement is achieved through a 
separation of the processing phases, in which each listed step is 
being performed by a different MapReduce job. This modular 
subdivision of the information extraction process allows for 
fine control; at each step in the MapReduce pipeline, the 
intermediate data are stored on the Hadoop Distributed File 
System (HDFS) and therefore present opportunities for human 
intervention. Through this continuous evaluation and 
integration process that involves the human, we aimed to 
improve the global accuracy while reducing the time necessary 
for the entity recognition task when processing huge amounts 
of data. 

All assertions made about the documents within the 
processing pipeline are assigned confidence values at the time 
of extraction; every assertion below a defined certainty 
threshold gets ranked according to uncertainty and successively 
sent out to the following component of the pipeline. This is 
accomplished by adding an additional output to several of the 
MapReduce jobs, containing the machine-performed assertions 
ranked by confidence. The ranked assertions are periodically 
scanned and read from the Accumulo database through a Java 
connector implemented using the available public API. Thanks 
to this component, the assertions are then pushed to RabbitMQ 
that stores them in the appropriate queue. 

Once the data is in the queue, the RabbitMQ process is 
triggered and its service (running in background all the time) 
takes care of pushing them to the instance of Node.js 
subscribed to the queue. This is done by taking advantage of 
the simple and performant publish/subscribe mechanism 
provided by RabbitMQ. The Node.js module is, by design, 
optimized to maximize throughput with its non-blocking I/O 
model. Data is received asynchronously from one pipe and sent 
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to another. The Node.js module implements an HTTP server 
that is responsible for serving this live data to a web client, 
through WebSockets via Socket.IO [20]. This end of the 
pipeline ultimately allows the human operator to examine their 
veracity and provide corrections, if necessary. The web 
interface for the human operates is itself built with HTML5, 
JavaScript and jQuery [21]. 

Assertions are presented to the user by an interface in order 
of reverse confidence; that is, the user is presented with low-
certainty assertions first as more of the user’s time is likely to 
be spent on those. When a change on one or more assertions is 
made, the human operator can decide to send the changes back 
to Accumulo in a one by one fashion or all at once. The format 
chosen for the data-interchange is JSON (JavaScript Object 
Notation) [22], allowing the exchange of data between the 
Node.js module and the Accumulo API. After a JSON data 
transformation, the Node.js module pushes the restricted set of 
assertions that the human operator modified back to Accumulo 
through the Java API connector. 

All the changes made by the human operator are executed 
in parallel while the MapReduce pipeline is still operational on 
other documents and entities. At each human intervention 
opportunity, the data is not required to be examined; if a user 
never offers any sort of input, the processing of both the 
unexamined document and subsequent information will 
continue. If corrections are provided, they will be persisted 
both to the HDFS (where the document’s representation will be 
updated and any necessary reprocessing will be performed), 
and Accumulo, the datastore where all salient assertions are 
ultimately persisted. Accumulo takes care of updating the 
dataset on which the MapReduce jobs are operating in an 
asynchronous and consistent way. Possible interventions made 
by the human operator will also influence the capacity of the 
MapReduce entity recognition task, increasing its precision and 
confidence during the disambiguation phase. 

VI. EXPERIMENTAL RESULTS 

A. Experimental Design 
A testing corpus of 60 documents was selected from news 

sites. The gold data set was constructed by randomly sampling 
20% of the corpus at the sentence level. This body of text was 
manually annotated with named entity tags for person entities. 
The corpus consisted of articles from online news sources, 
specifically Al Jazeera. Testing was performed on a single-
node Hadoop Cluster running on a CentOS 6.3 virtual 
machine.  

A series of experiments was then conducted using the gold 
data set. The following phrases are used to describe stages that 
occurred in each experiment. 

Statistical Entity Extraction: Named entity extraction was 
performed by the statistical OpenNLP name finder, which 
uses a maximum entropy model. 

Dictionary Tagging: Extracted entities are added to a 
dictionary, which is then used with the OpenNLP dictionary 
name finder to locate and tag missed names. This allowed 
some degree of name recognition to step in when entities 
appeared in less obvious contexts and statistical recognition 
failed. For instance, if the name “Bashar al-Assad” were found 

in the statistical step, all instances of the sequence “Bashar al-
Assad” would be tagged as an entity in the dictionary step. 
The type of the dictionary-recognized entity was assigned to 
match the original dictionary entry. 

Name Expansion: Extracted character sequences 
were divided into substrings so that the individual components 
of the name (i.e. first, middle, and last names) could be 
extracted. For instance, a person entity named “John Kerry” 
found in the first pass would result in the tagging of non-
consecutive instances of both “John” and “Kerry” as person 
entities in the second pass. 

Human Intervention: Prior to the dictionary tagging 
stage, a user was allowed to vet entities for accuracy. In this 
experiment, 199 person entities were reviewed and, if 
appropriate, corrected. 
 

Experiment	  1	  (Baseline)	  :	  
+	  Statistical	  Entity	  Extraction	  
Experiment	  2:	  	  
+	  Statistical	  Entity	  Extraction	  
+	  Dictionary	  Tagging	  
-‐	  Name	  expansion	  
-‐	  Human	  Intervention	  
Experiment	  3:	   	  
+	  Statistical	  Entity	  Extraction	  
+	  Dictionary	  Tagging	  
+	  Name	  expansion	  
-‐	  Human	  Intervention	  
Experiment	  4:	  	  
+	  Statistical	  Entity	  Extraction	  
+	  Dictionary	  Tagging	  
-‐	  Name	  expansion	  
+	  Human	  Intervention	  
Experiment	  5:	  	  
+	  Statistical	  Entity	  Extraction	  
+	  Dictionary	  Tagging	  
+	  Name	  expansion	  
+	  Human	  Intervention	  

 

B. Experimental Results 
The results of the experiments are shown in Table 1. 

Experiment Results 
.  

Table 1. Experiment Results 

Experiment	   Precision	  %	   Recall	  %	   F-‐Measure	  %	  
Experiment	  1	  	   79.79	   40.11	   53.39	  
Experiment	  2	   50.64	   42.24	   46.06	  
Experiment	  3	   50.31	   43.85	   46.86	  
Experiment	  4	   80.61	   42.24	   55.39	  
Experiment	  5	   80.39	   43.85	   56.75	  

 

C. Discussion 
The baseline, using the default OpenNLP named entity 

extraction models, showed reasonable precision and low 
recall. No research or effort went toward improving the 
baseline accuracy, as our goal is merely to show the effect our 
distributed pipeline and human vetting had on the results.  

When found entities were tagged elsewhere in the corpus, 
as in Experiments 1-4, the recall increased as missed entities 
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(of the same name) were found. However, the precision 
dropped significantly. Random inspection of the results 
indicate that some common words had been tagged in the 
statistical extraction stage as entities, and these wrongfully 
tagged entities were subsequently perpetuated throughout the 
corpus by the dictionary tagging stage. When we added in the 
name expansion, allowing multi-word names to be annotated 
as parts, the recall improved yet again, but the precision went 
down slightly; this can be accounted for in the same way as 
the initial precision drop. 

The human vetted results improved over the baseline. 
They yielded similar or greater increases to recall without the 
loss of precision. This is because the user removed the entities 
that had been wrongly tagged in the statistical extraction stage, 
preventing them from being wrongfully tagged throughout the 
remainder of the corpus. The gains to precision will be small, 
because there are few wrongfully tagged entities; these results 
show a system that is targeted at improving recall. At this 
stage, the user is merely certifying whether or not something 
is an entity, which allows the boost in recall without the hit to 
precision that would result in non-entities being tagged 
throughout the corpus. Further, there is an upper bound to 
recall gains, as our user interface does provide away to 
suggest or tag entities which were missed entirely.  

The overall testing showed a measurable improvement in 
F-measure and recall with human vetting over non-vetting 
with a single intervention point currently implemented. It 
allows for the recall gain of the automatic extraction system 
without lowering precision. The measured accuracy of our 
methods was highly dependent on corpus size. Large amounts 
of data are paramount to any statistical extraction system, and 
the small corpus made some of our measures unstable. 
Further, the efficacy of our system is directly proportional to 
the interrelatedness of the reports; our design relies on our 
entity reoccurrence throughout a corpus.  

VII. CONCLUSIONS AND FUTURE WORK 
The architecture proved to be effective in several of its design 
goals. It allowed for the effective insertion of a human 
operator into a massively distributed, high-volume data 
environment; the human’s contributions had a noticeable 
effect on the overall accuracy of the system. The system made 
efficient use of the operator’s input without being wholly 
dependent on human intervention – the system never waits. 
Finally, the architecture valued the human-in-the-loop over 
computational resources, but still limited the amount of time 
spent on redundant and unnecessary reprocessing.   
Moreover, the results demonstrated a concept fundamental to 
the design of any multistage decision system: error 
propagation. Each assertion made automatically by the 
computer will be propagated by the system, creating a 
snowball effect of incorrect information. The experiments in 
which entity name expansion occurred without human vetting 
showed just how detrimental to a system’s accuracy this can 
be. The minimal interaction of a human with the pipeline at 

each stage of processing can dramatically increase a system’s 
accuracy by preventing error propagation.  
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